
Prototype Build for the Omnicom portable SDR

platform

Haoran S .Diao

December 31, 2017

Note To MIT:This document describes my current active project. It is
likely that by the time you read this much more progress has been made.
I apologize if it is unacceptable to send in an unfinished project, but I
felt this one was the one that aligned most with the efforts I’m making.
If you want to read more, project updates will start popping up on my
personal site http://hairydiode.xyz, any code I write for this project
will also be on my github https://github.com/knolax. The hardware
I’m building here was built so I could start testing a distributed network
idea I had, so for more context on what i’m going got you can check
that out http://hairydiode.xyz/network.

Abstract

Digital radio communications in computers currently rely on opaque,
protocol specific radio hardware. These radio chips usually run propre-
tary firmware and require proprietary drivers which creates a source of
vulnerability. In addition, the protocol specific nature of these chips limit
computers to a preset set of protocols. As of late, robust and powerful
Software Defined Radios such as the LimeSDR have become widespread,
allowing for many possibilities in pentesting and development of new radio
protocols because SDRs are general purpose radios where signal process-
ing is done in software. However, SDRs have never been integrated into
portable form-factor akin to a mobile phone, even though that’s one of
the most common form-factors for a communications device. I am build-
ing the Omnicom as a SDR based device with this form-factor in mind.
The primary use cases here are pentesting, and network protocol develop-
ment. This isn’t one of those ”on the whim” projects because I actually
need something like this to develop a network protocol idea that I’ve been
thinking of.

1



2



2 BILL OF MATERIALS

1 Design Requirements

So given that the Omnicom is going to be mostly used as a development tool, i’m
focussing more so on robustness than polish. Other than that the specifications
are as follows:

Portable It has to be small enough to carry around and self contained, but
not necessary small enough to fit in your pocket.

Tactile User Interface I mean specifically a keyboard here. Personally I de-
spise touchscreens, any sort of Human Input Device that isn’t a keyboard
requires way too much hand-eye coordination to be fast AND accurate at
the same time.

Reasonably Durable The Omnicom has to be mechanically sound, properly
mounted components and all that jazz, this requirement is more of a chal-
lenge to myself since most of my previous electronics were pretty frail.

Mechanically Sound Electrical Connections - That means I have to keep
in mind proper potting staking of all the electrical connections.

Spacious Interiors Since I’m using commercial parts I’m going to have to use
standard cables, which take up some space.

Use Mostly Commercial Parts Altough it’s fun to fabricate my own com-
ponents, it’s more reliable and less labor intensive to use commercial parts.
The power supply is also just a commercial power brick, since it’s safer
for me not to deal with my own LiIon charging circuit.

Familiar Operating System - The Omnicom has to run Linux, preferabbly
Arch Linux, my daily driver. A familiar system means more software
support and less grief for me when I have to write some of the drivers.

2 Bill Of Materials

Custom Mechanical Keyboard This means a custom PCB and custom drivers.

Custom PCB I’m not going to use point to point construction for this be-
cause of the requirement for mechanical soundness and because I value
my sanity. This PCB also doubled as a way for me to connect the LCD
touchscreen’s I2C interface and power pins to the Raspberry Pi.

30 tactile microswitches Like I said, tactile feedback is important to me,
so I’m using industrial microswitches for this keyboard.

10 diodes for each of the columns IN4007 MIC Through-hole diodes

Standard Male Header Pins w/ standoffs Connections for the Raspberry
Pi and LCD.

3



2 BILL OF MATERIALS

Osoyoo ”3.5 Inch” HDMI LCD with I2C Touchscreen This is from one
of those shady reseller screens with no documentation I bought off of
amazon. It was originally meant to be a break-out board for another
model of the Raspberry PI, but the actual screen itself just accepts an
HDMI input. I chose this screen because the HDMI input meant I didn’t
have to mess with drivers to get it to work, so it didn’t matter that it it
came with bad documentation.

Standard Female Header Pins Since this screen was mean for another model
of Pi, and I needed to have it in a position far away from the Pi, I needed
to connector between it and the Pi’s GPIO. This only connects the power
pins and I2C so it wasn’t that much of a deal.

Commercial 4 foot HDMI cable No Way i’m going to make my own slim
HDMI cable. The smallest HDMI cable that I could by was 4-foot. But
that’s a feature not a bug! If I keep the HDMI cable external and spool it
up in the back, It means I can easily connect the Omnicom to an external
screen.

Raspberry Pi Zero Now a days there are lot of commercial singleboard com-
puters out there. What I had lying around and what I knew could run the
OS I wanted however was a Raspberry Pi Zero. It’s definitely underpow-
ered for SDR signal processing, and the blockchain operations I’m doing
for my distributed network, but for now it’ll do before I move on to a more
powerful platform.

2 USB-micro to USB type A adapters For Robustness’s sake.

Custom made ”slim” USB-Male to USB-Male Cable Standard USB con-
nectors just didn’t have that extra centimeter of slimness I wanted, anded
weren’t the correct length, so I made my own USB cables by canibalizing
some USB junk I had around.

Custom made ”slim” USB-Male to USB-Female Cable I had to make
two of these, one to connect the Pi to the power supply and one to connect
it to the SDR.

Commercial Power Brick of unknown manufacture I didn’t want to deal
with Lithium battery charging, So i just used a commercial USB power-
brick I got as a promotional handout at the security conference. I wasn’t
terribly concerned with battery-life or the amount of current it could sup-
ply. It should be enough for the Pi, SDR and Screen, and If i want to give
more power to the SDR, there’s also an 9v power jack on that.

LimeSDR Software Defined Radio The part that really matters. The LimeSDR
is a full duplex SDR with a decent frequency range that came out last year,
and it’s meant to be plugged into a laptop. It’s also has a pretty decent
software ecosystem around it, which is important because I’m not planning
on writing too much custom code for this project.

4



3 INTERNAL LAYOUT AND FRAME

Custom frame for everything to be mounted on In order for the Omni-
com to both be portable, and properly mount all these components, I have
to use a pretty unconventional layout which requires a custom frame to
mount everything in.

3 Internal Layout and Frame

3.1 Layout

So I have 3 PCBs, an LCD and a powerbrick that I need to put together in a
way for me to fit in my hand, and also minimize the amound of wires I have to
use. To make mounting easier, I had everything be in 4 ”layers”.

What I did was I had the SDR on the bottom since it was the largest com-
ponent. Above the SDR I mounted the SDR antenna and room for the USB
connectors going into the SDR and powerbrick, this formed the first layer.Then
in the layer on top of that we have the Pi, which since it only took up part of
that layer, left room for all the internal cables to come through. The next kayer
was the powerbrick, but it was positioned slightly above the Pi’s GPIO so that
on that same layer I could connect te keyboard PCB to the Pi. The keyboard
PCB and the screen then completely covered the Powerbrick, with female head-
erpins at the side connecting them. With this layout I could basically have all
the ports of the SDR and Powerbrick at the top, accesible as is, and also have
room for the USB cable connectors. I cadded the layout in LibreCad and you
can see it on the next page.

5





3 INTERNAL LAYOUT AND FRAME 3.2 Frame

3.2 Frame

With the layout cadded out I set out to design some fancy frames to hold
everything in. What I did is I had an outer frame that enveloped everything,
and internal frames slotted into that that held all the components in place. You
can see the design for that below:

7







3 INTERNAL LAYOUT AND FRAME 3.3 Frame Construction

3.3 Frame Construction

I was able to model and print out the external frame, but realized that since I
was using a public printer it was unfeasible to print out the internal frames. I
opted instead to make them out of tin, using the above designs as templates.
The slots in the external frame didn’t turn out that well, so I ended up holding
the tin plates in with friction. The plates are insulated and so are the mounting
holes for all the components so I should be fine. I should ground everything
in the future just for safety though.I have yet to create a faceplate to secure
everything in place. Pictures below.

10



3 INTERNAL LAYOUT AND FRAME 3.3 Frame Construction

11



4 INTERNAL USB CABLES

4 Internal USB Cables

The connectors on a standard USB cable have this long length of rigid plastic
that takes up a lot of space. If you actually open one up you will see that it’s
mostly plastic there to serve as stress relief. To free up space, I made some
custom USB cables that were the exact size I needed them to be, and had really
small connectors that didn’t take up much space. What I did was I scrapped
some USB male and female headers from some junk electronics I had. USB has 4
wires and shielding. I soldered 4 wire-wrap wires to the connectors, then potted
the exposed wire with hot glue(Resin is Resin) so that they don’t cross over and
short. I then used scotch-tape to secure the unexposed wires that made up the
length of the cable. I wrapped aluminum foil around that as shielding, making
sure to have a wire ground it to the metal parts of the USB connectors. Finally
I insulated the entire cable with scotch-tape again. Pictures shown below:

The Powerbrick cable was slightly different in that I used a thicker gauge wire,
and a switch so that I could hard shutdown the Omnicom without unplugging

12



5 THE CUSTOM ”SWITCH KEYBOARD

anything.

5 The Custom ”Switch Keyboard

First I had drew out a schematic for the keyboard in KiCAD, shown below.
It’s a really standard 3x10 matrix design. The only thing special about it is
that I used the same PCB to reroute the Raspberry Pi’s GPIO to the hdmi
touchscreen, so that I could potentially use the touchscreen, and didn’t have to
run a seperate cable for power.

5.1 Alas, N-Roll Keyboard!

Keyboards have this property called ”roll”, which is the number of keys it can
detect for sure to be pressed down with one scan. In order to have ”n-roll”,
or as many keys as there are on the keyboard, every key has to have a diode
next to it. I didn’t have room for that because I was using through-hole diodes
so I settled on having 10 diodes for the columns. This doesn’t have to do

13



5 THE CUSTOM ”SWITCH KEYBOARD 5.2 Custom PCB

with roll but to protect against shorts. since the Raspberry Pi doesn’t have
tristate GPIO outputs, when you read a column, one column is set high and the
others low. Without a diode there, if two switches on the same row are pressed,
the high column pin could be shorted to one of the low column pins. These
GPIOs are usually current limited so it’s not a super serious issue if i don’t have
these. There are external pull-downs for the row pins as well, even though the
Raspberry Pi has internal pull-up/pull-downs.

5.2 Custom PCB

I designed a PCB also in KiCAD and ordered it from PCBWay. Once I got it
back I realized that I had made quite a few errors. The holes for the headerpins
that connected to the Raspberry Pi GPIO were flipped, which meant I had to
use wirewrap wires to connect the headerpin to the PCB using point to point
soldering. I put in some supports for the exposed bit of wire and potted the
entire mess which made it reasonably mechanically sound, but it’s still a jank
construction. I also realized that the holes for the dioles were too small, and the
small pad around them meant I couldn’t expand it. I ended up soldering the
ends of the diodes to just one side of the pads without having them go through
the hole. This is obviously not optimal, but alteast everything is staked.

5.3 PCB assembly problems

Then came the real folly, while testing I realized that I had soldered everything
backwards, and because of my questionable soldering above it would’ve been a
pain to fix it.I chose to just reverse the row and column pins so that the row pins
were outputs and the column pins were inputs. This meant that I didn’t have
the protection of the diodes for shorts, and that I had to rely on the Raspberry
Pi’s internal pulldowns. I couldn’t just make the keyboard active low either
because the Raspberry Pi GPIO outputs weren’t that good at sinking current.

14



5 THE CUSTOM ”SWITCH KEYBOARD 5.3 PCB assembly problems

15



5 THE CUSTOM ”SWITCH KEYBOARD 5.3 PCB assembly problems

16



7 WRITING A LINUX KERNEL MODULE FOR THE KEYBOARD5.4 Keyboard Layout

5.4 Keyboard Layout

Obviously 30 keys is way less than a full keyboard, so what I did is i set aside 3
keys to switch the keyboard to different ”modes”, for all the keys on a standard
keyboard, plus control a mouse. I also had a key set aside for sticky keys since
you obviously couldn’t do key-combos otherwise.

6 Some Configuration

As mentioned before, the Omnicom runs Linux, specifically the ArchLinux dis-
tro. I had already installed an Arch system on the Pi Zero I had so I’ll spare the
details. The main two things in software I had to work with were: configuring
drivers for the SDR and LCD screen, and writing a kernel module to drive the
keyboard. The LCD screen doesn’t need a driver for the actual screen part,
other than some settings in the Raspberry Pi’s boot config that needed to be
changed. However, I looked at the drivers for the touchscreen and found that
they were proprietary. The touchscreen uses a really simple I2C interface so
I’ll just write my own later. I haven’t gotten to the point where I have started
using the LimeSDR, but I do know that everything is connected right and that
it powers on as expected. LimeSDR has really good software support that’s
opensource, so I should be able to demo it soon.

7 Writing a Linux Kernel Module for the Key-
board

Obviously given that I built a custom keyboard using GPIOs I’m going to have
to write a kernel module to drive it. After some looking I saw that I only
needed to interface with two kernelspace APIs, the Linux Input Subsystem, and
the the Linux GPIO interface. There are multiple versions of the Linux GPIO
Interface, but I chose the legacy one because it was the simplest. Dumb decision
I know, but I feel like that support’s not going to dropped anytime soon. The
code is below. There are obviously still some issues that I will describe below.
The source code is too long to put in this document, but if you do want to
take a look go to https://github.com/knolax/skey. I used git to transfer code
from my laptop to the omnicom, so most of my commits weren’t tested, and
you’ll see my weird use of commit messages as test logs, but digress. I have a
thread that scans the keyboard, skey update thread(), which then reports the
state of the keys to processkey(), which handles rising falling edge detection,
the 3 keyboard mode I describe above, and stickykeys. processkey() then
emmits the approrpiate hid events to the input subsystem. The keycode map
is hard-coded in a header file also listed.

17



8 THE FUTURE 7.1 Issues

7.1 Issues

One issue I ran into was that the Linux GPIO interface, both new and old, did
not have a way to set pin pullups/pulldowns. The ”conventional” way to do
this was through a device tree overlay, which declares system resources on a
Raspberry Pi. The issue with this is that the Raspberry Pi’s dtoverlay system
was really sparsely documented and unreliable. In addition testing was a pain
since the kernel I was running didn’t support dynamic dtoverlay loading, so I
had to reboot the Omnicom everytime. After a while I decided to just write a
systemd unit file that used the gpio utility from WiringPi to set the pin pullup-
s/pulldowns. This wasn’t optimal because it added a userspace dependency to
my driver. I did check how the gpio utility set pullups/pulldowns and found
that it was using some really low level memory mapped controls. I wanted to
stick to the ”proper” kernel interfaces so I didn’t try to replicate it in my driver.

8 The Future

Right now the Omnicom works well enough that I can develop code for the
Omnicom on the Omnicom. I’ve attached a video of me playing tetris with the
custom keyboard just for fun. Obviously I haven’t set up the actual software
that connects to the SDR yet so that’s the next step. Right now I’m thinking
of some cool demos I could do:

GSM cell tower spoofing

Ad-Hoc Wifi Network

Receiving Downlinks from the Iridium Network

18


